Scale-space feature extraction on digital surfaces

نویسندگان

  • Jérémy Levallois
  • David Coeurjolly
  • Jacques-Olivier Lachaud
چکیده

A classical problem in many computer graphics applications consists in extracting significant zones or points on an object surface, like loci of tangent discontinuity (edges), maxima or minima of curvatures, inflection points, etc. These places have specific local geometrical properties and often called generically features. An important problem is related to the scale, or range of scales, for which a feature is relevant. We propose a new robust method to detect features on digital data (surface of objects in Z3), which exploits asymptotic properties of recent digital curvature estimators. In [1, 2], authors have proposed curvature estimators (mean, principal and Gaussian) on 2D and 3D digitized shapes and have demonstrated their multigrid convergence (for C3-smooth surfaces). Since such approaches integrate local information within a ball around points of interest, the radius is a crucial parameter. In this article, we consider the radius as a scale-space parameter. By analyzing the behavior of such curvature estimators as the ball radius tends to zero, we propose a tool to efficiently characterize and extract several relevant features (edges, smooth and flat parts) on digital surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

Morphological scale-space fingerprints and their use in object recognition in range images

In this paper we review the theory of multiscale dila-tion-erosion scale-space and the process of feature extraction via morphological scale-space ngerprints. We then discuss the reduced form of the ngerprints and state the scale-space causality theorem. These ngerprints are then applied to the eecient recognition of multiple objects from range data. The proposed recognition system is invariant...

متن کامل

Point primitives for interactive modeling and processing of 3D-geometry

3D geometry has become increasingly popular as a new form of digital media. Similar to other types of media data, i.e., sound, images, and video, this requires tools to acquire, store, process, edit, and transmit 3D geometry. With increasing complexity of 3D geometric models and growing demand for advanced modeling functionality, significant effort is being devoted to the design of efficient, r...

متن کامل

Local feature extraction and matching partial objects

A primary shortcoming of existing techniques for 3D model matching is the reliance on global information of model’s structure. Models are matched in their entirety, depending on overall topology and geometry information. A current open challenge is how to perform partial matching. Partial matching is important for finding similarities across part models with different global shape properties an...

متن کامل

Multiscale 3D feature extraction and matching with an application to 3D face recognition

Keywords: 3D feature extraction 3D shape matching 3D face recognition Heat equation Mesh signal processing a b s t r a c t We present a new multiscale surface representation for 3D shape matching that is based on scale-space theory. The representation, Curvature Scale-Space 3D (CS3), is well-suited for measuring dissimilarity between (partial) surfaces having unknown position, orientation, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Graphics

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2015